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The problem of boundary layer development around a body as it begins to move through 
an incompressible viscous fl.lid at rest is one of the basic problems of boundary layer 

theory. We prove the existence and uniqueness of the solution of this problem under cer- 
tain natural conditions, use the method of straight lines to obtain approximate solutions 
and prove their convergence, and obtain expansions in powers of t for the quantity defin- 
ing the resistance of the medium to the moving body and for certain other quantities. 

These expansions contain an arbitrary number of terms and are asymptotic as t -+ 0. 
The remainder terms are estimated. Boundary layer development during acceleration 
was investigated by Blasius [l], Gijrtler p], et al. Their studies are summarized in mono- 

graph [31. 
Let us consider the problem of boundary layer development during acceleration for an 

external flow of the form U (t, Z) = t”U, (t, z) for any number n > 1, where 
u, (t, 3) is either independent of t (as with Blasius and GSrtler, who considered integer 
n ) or is such that V,, J U, is a bounded function. 

The problem of boundary layer development at a body as it begins to move in a vis- 
cous incompressible fluid at rest in the case of symmetric flow leads us to consider the 

system of equations Ut + UU 
X 

+ UU 
u= - Px + vlY7 u, + uy = 0 (1) 

in the domain D (0 < t < T, 0 f 3 < X, 0 Q y < CO} under the conditions 

u If=0 = 0, u Ix=0 = 0, uIzI=O=O, uIvcO=u0(t,5), u+U for y-too (2) 
Here 

u1 i- UU, = - PI, IY]~=~=O, UItco =0, U>O for tz.0 

U = tn U, (t, Z), n >I 

The ratio U,, / U, is a bounded function. 
In [4] we showed that for n = 1 problem (l),(2) has a solution given a certain smooth- 

ness of the functions U (t, x), II,, (t, z) and that this solution is unique in the domain 
D for t 6 tl, where tr = con& > 0 , and depends on U and v,,. We also wrote out 
the first terms of the expansion of the function u in powers of t and estimated the re- 

mainder term. In addition,we proved that the approximate solutions obtained by solving 

a certain system of ordinary differential equations converge to the exact solution of prob- 

lem (1). (2). 
We shall carry out a similar analysis for the case of an external flow of the form 

U = t”U, (t, z) for any n> 1. In addition, we shall construct an expansion in powers 
of t asymptotic as t -+ 0 with an arbitrary number of terms and estimate the remain- 
der term for the quantity uy (t, Z, 0) which represents the resistance of the medium to 

the motion of the body, and for certain other quantities. 
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Specifically. in G’drtler’s case (U (t,, z) = t”UI (z), n > 1, v. (t,~)~o) we have 
Q 

ntl IVCO = u1 (r) tn-“. 2 Yt (z, 0) t@+l) + u, (5) 0 (tn-“2+(q+1)(nfo) 
i=0 

where q is an integer and where Yi (E, q), i = 1, . . ., q must be determined succes- 
sively as the solutions of ordinary differential equations with respect to TJ which depend 

on the parameter E ; the quantity Y. does not depend on E (see Eqs. (20) with conditions 

(21),(22)) - 
An entirely similar procedure can be used to investigate boundary layer development 

during acceleration for three-dimensional axisymmetric flow.with the second equation of 

system (1) replaced by the equation 

(F (t, +), + (F (t, 5) r&, = 0 

where r (t, z) is a given function describing the streamlined surface. The same applies 
to the problem of extension of the boundary layer when instead of the condition .U lr=o= 

= 0 we are given the initial velocity profile 

&=o = % k YL 4 6 Y) > 0 for t,y > 0 

The solution of problem (l), (2) can be constructed by the method applied in [4] to the 
study of problem (l), (2) in the case n = 1. 

Let us make the following substitution of the independent coordinates in system (1) : 

z = p-‘/2, E = 5, Tp=+ (3) 
Let us also introduce the new function uytn 

ul=- 
u (4) 

Eliminating n from system (l), we obtain an equation of the form 

VWBW,, - r3 (n - ‘Ia) w, -qUzaN~+n(q-i)9wq+ 

+A,PRIU,+ B,zzNw = 0 ( 
N=lf& 

1 (5) - 

for w in the domain Q{ 0 ,< z < T*“/,, 0 ‘6 E 6 X, 0 Q q < 1). In this expres- 

sion A, = (q2 - 1) U, + (sj - 1) U,, / U,, B, = - qU, - U,, / VI 

We add to this the boundary conditions 

w In=1 = 0, 20 /TX0 = 0, (vww, - voWtN + 726 -k ClzzN) (-rl=o = 0 (6) 

where 
Cl = ux + u1t I Ul 

Let us construct the solution of problem (5).(6) for some interval 0 < ‘c < rl, ‘cl = 
= const > 0, and then obtain the solution of problem (l), (2) as a corollary. 

The existence and uniqueness of the solution of problem (l), (2) for n > 1 can be 
proved essentially as in the case n = 1. We shall ,therefore merely pomr out the dif- 
ferences between the two proofs. 

Let f”J< (sj) = f (mh, I&, T$ f or any function f (z, E, sj), P. = const > 0. Let 
us consider the following system of ordinary differential equations in the interval 10, l] 
of values of tj : 

Lrn& (w) E v (WV)2 w:;k - h-l (?nh)3 (n - l/z) (W+ - wm-1.k) - 

_ h-qu:‘-1.k ({m - 1) lqSN (WV - 2LF.y + n (q - l)(mh)2 wy + (7) 
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(cont. ) 

+ A:-~*” (cm _ 1) h)2Nw~~k + By-lzk ((m- 1) h)2N~m’k = 0 jN = 1 + i&j 

fJ,Ak zz 0 

under the boundary conditions 
m=i, . . .; k=O, 1, . . ., [X/h] 

UPk (1) = 0, h,,, (w) s [vWm~kW;*k- U~-l*k ((m - 1) h)Nw”P” f 

+ n (mh)‘~ _t cy-13k ((m - 1) h)2N] I*_0 = 0 (8) 

Let us show that as h-+0 the solutions Wmyk (q) of system (7) under conditions (8) 
converge for mh < q = const > 0 to the solution of problem (S), (6). We begin by 
proving that the solution wmtk of problem (7), (8) exists for mh < ‘to ; we shall then 
establish estimates for this solution which are uniform in h. 

The approximate solution 
rJV = u ((mh) ‘, kh, q), N=(i +&J 

of problem (l), (2) can be obtained with the aid of the solution of problem (7), (8) from 
the formula wm.k 

y = (&#v 5 (WV @))-I ds, VVrntk = 2.5 mk / V((mhJN, k/t) 
0 

The following lemma on the existence of the solution of problem (7). (8) can be justi- 
fied exactly as in [4]. 

Lemma 1. Let VI, Us,, Us, Ur-l, v, be bounded in D. System (7) with bound- 
ary conditions (8) then has a solution WV (r)) positive for 0 < q < 1 if 0 f kh < 
< X and 0 < mh < 7. \( T@la, where z. depends on U and , vo. The functions 

W, m~k are continuous for 0 < q < 1 and are continuously differentiable for 0 < 
6q<1. 

As in [4], the solution of problem (7). (8) can be obtained as the limit as E + 0 of 
the positive (for 0 < 9 < 1) solutions of the system 

““7;” + L,,,(w) = 0, a>O, m=l, . . .: k=O, 1, . . ., [X/h] 

with boundary conditions (8) whose existence can be proved with the aid of the Leray- 
Schauder theorem. 

Lemma 2. For 0 < q < 1 there exists a solution of the equation 

A, (Y) = vY2Y,, - (n - 1/2) Y + (q - l)nY, = 0 (9) 
which satisfies the conditions 

Y (1) = 0, hn (Y) s (VYY, + n)lnyo = 0 

This solution has the following properties : 

1+f2 (1 - rl)fJ< y !d <Ml (1 - q) 0 

Ml (1 - 7) ('3. - 4 B Y (11) for 70 B '1 < 1 

(IO) 

(11) 

(12) 

- M&J d y, (71) < - 
I yym I < Jf67 ml, < 

(G = V- In p (1 - q), p = const, 

Here p is chosen in such a way that 

lM,cr (13) 
- Jf 6 (14) 

‘l<P<l) 
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o2 llxo = 2n + II2 + 6, v&f12 = 1, vf+f22 = l /2 - 6 

6, Mi, K, qo=eonst>O; i=3, . . ., 6 
where 6 is some small number. 

Proof. Lemma 2 can be proved in the same way as Lemma 2 of [4]. We shall mere- 
ly note the slight differences which arise for n 7 1. It is easy to show that if 

cp1= M% (f - Q5, viIfx3= i , 531 = 2n + 5% -I- 6 
then 

n=o 

A,(cpl)<O for o<rl<i, A, 644 < 0 

For this reason Y (?l) < ‘pl (q). In similar fashion we can show that 

Y (?j) > (p2 (rl) = % ~~-4i~5, v&f*3 z!zz y3 - 6 

for some sufficiently small constant Ma. 

In order to obtain estimate (14) we must refine the lower estimate for Y (q) in the 

neighborhood of q = 1. Let h (q) = M1 (1-q) (o - K). Let us show that the constants 
K 7 0 and 0 < q. < 1 can be chosen in such a way that the inequality Y (q) > cps, is ful- 

filled for q,, < q \< 1. It is easy to see that 

Let the inequalities 

K/o-Cl, 1--K/a>,& d = const > 0, Mid < Jf, 

be fulfilled for rlo Q 17 < 1 . 
Then, if K is large enough, 

A, (cps) 7 0 for rlo 6 q < 1 

Let us choose q. in such a way that 

U-h”/a&,=,,,=d 
Then 

1 -Kfo>,d, KEU<l 
so that 

for qo d q G f 

A, (cp3) > 0 for ‘to < rl < 1 
Further, 

(PS]~_,~= Md(l - rl~k+,=~+W~ - sola (,,=ino\( Y(+Io~ 

since Mzd < Ma. Considering the equation 

A, OPS) ----*WI = 4 ((~3) for 0 d rl < 1 

for the difference (p3 - Y and bearing in mind the conditions 

we find that 
Y (9) > v3 hf for q. d q 6 1 

Now let us prove inequalities (13). We begin by introducing the symbol z = Y,. Equa- 
tion (9) yields the equation for z , 

.Vpzn t 72 (q - 412 = (n - 1/z) Y (1% 

Just as in Lemma 2 of [4], we can show with the aid of Eq. (15) that there exist con- 

stants Maand M4 such that -M,o<z<-MM,o foro<q<l. 
Estimates (11) and (13) imply that 

I VYY,, I < (n - w + n (1 - rl) I Y, I y-1 Gg YM5 
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Let us now show that 
YY,, < - Me 

Inequality (12) implies that there exists a sequence q’vwhich tends to unity as N -f Dc 
and is such that Y,(r?) \< MI (- Q + l/z o-9 I,_jv + MrK 

Hence,for a sufficiently small 1- qclN we have 

vyy,, Irlzri~ L- [(n - %) + n (i - 11) Y,Y-ll jriEnN < 

<[(n-l h)- n (i - ‘/~a-~) + nK/O] /q=nN < - M, 

(MT = const > 0) 

Differentiating Eq. (9) with respect to q, we find that R = YY,, satisfies the equation 

A” (R) 3 vYR, + vY,R + n (q - 1) Ry-1 = - ~/~y, 

Let Y = -MB and 0 t= MS < M,Iv. Then 

An (R - Y) = -l/z Y, f Me (vy,, -!- (q - l)nY-I) > 0 (16) 

for 0 < n < i if Me is sufficiently small. From inequality (16) and the condition 
(R - Y) < 0 for 11 = $' we readily infer that R - Y < 0 for 0 < n Q rlN , which 
means that R <- MB for @ Q TI < 1. 

Lemma 3. Let U,, Ulr, U,tUr-l, Us be bounded in D. The solutions of prob- 
lem (7), (8) positive for rj < 1 then satisfy the inequalities 

mhY (1 - a {mhy-‘) < W”qy) f m/&Y (1 + p (mh)? 

for mh < To’, To’ < 70. 

Here a, @, r’. are some positive constants independent of h. 
Proof. Let us compute L,, k (Fr), where 

Fy* k(n) = mh Y (q)(l + P(mh)N-l) 

For m > 1 we have 

L n, k (FI) = (1 + B (mh)N-1)[(mh)3 (vy*y,, - i;t - V?)Y + (q - l)nYJ + (mh)3 (2 + 

-j- fi(mh)N-l)fi (mh)N-‘vPY,, + Ayelv ‘((m - l)h)2NmhYn -j- Rye” ‘((m - l)h)2NmhY]- 

- h-l (mh)3 (n - ‘12) (m - i)hYfJ ((mh)N-i - ((m - i)h)N’-l) 

Since YY,, < -MB, it follows that L,,, (F1) < 0 for TI < 1 provided that 6 > 0 is 
sufficiently large, that mh < TO’, and that 5 is sufficiently small. The constants 6 and 
to’ do not depend on h. 

Now let us compute &,k (Fi). We have 

h,, k (Fl) = {(mh)2 (vYY, + n) + v (mh)N+l (2 + P (d)N-‘)PYY, - 

- vo 
m-1, k ((m - 1) h)N mhY (1 + p (mh)N-l)j+ CT-‘, k ((m - i)h)2N) Inzo < 0 

! N=i+&) 

provided that fi > 0 is sufficiently large, that mh < ~0’ , and that ~0’ is sufficiently small. 
The inequalities 

L m, k (Fl) - Lm, k @) d O. 

and the conditions 

+h,,k(h)- &h,,k(W)<o 

F”1* k - & k = 0, (FT. k- ,J”. k &=r=O 
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imply that 
~“‘~~<ti(l+~(rnh)~-~)Y for mh<q,’ 

In similar fashion we can show that 

rums k > mh (1 - a (mhf-‘) Y for mh < ~0’ 

if a is sufficiently large. 

Lemma 4. Let U,, U,,, uItu-‘, v, have bounded derivatives with respect to 
E and 7. The following inequalities are then fulfilled for the solution wrnlk of prob- 

lem (7), (3) for mh < Z, : 

Yn (rl) (W(1 + al WP) < \ w?” (rl) < y7l (rl)(4(1 - PI PwN-‘) 

p-1 (W*,k _ Wm-l,k )[<(I -J-Q) Y, p-‘(w”fk-wmJ-l )IBmhY(N= 1 +A) 

1 W*lkWy;k I6 Kl(~Y9 w"~"qk<- Ka(mh)= 

Here zr, a,, &, K,, K2, E~ = const > 0. These constants do not depend on h, 
and &s can be chosen arbitrarily small. 

This lemma can be proved exactly as Lemma 4 of [4]. 

Lemmas 3 and 4 directly imply the following theorem. 
Theorem 1. Let the assumptions of Lemmas 3 and 4 concerning U, and v,, be ful- 

filled. The solution w of problem (5). (6) then exists in the domain !&, { 0 < ‘G < ‘~1, 

O<E<X, 0 < q < I}, where or depends on the functions u’ and v,; this solu- 
tion has the following properties: 

the function w (7, k, 11) is continuous in the domain &, and 

TY (q) (1 - aT”-‘) <w (7, E, 11) < TY (q)(l + BTN-‘) 

the derivative w,is continuous in rl for 0 < 7 < 1 and 

(17) 

7YB (rl) (1 + al-cN-‘) d w, (7, E, r) < -tY, (7) (1 - Pr-tN-‘) 
the derivatives y, w,, WW,,,, are bounded in the domain f&, and 

Izql<zY, IwJ<(l +q)Yv wwn-n<--KKzz2 

where the function w satisfies Eq, (5) almost everywhere in !&,. The constants a, p, a,, 

PI, K 2, e, are positive and depend on U, v. X- 
Theorem 2. The solution of problem (5), (6) is unique in the class of functions 

w > 0 which: (a) are continuous in the domain G?,, ; (b) have a derivative w,continu- 
ous in ‘1 for 11 = 0 ; (c) satisfy Eq. (5) and conditions (6) almost everywhere; (d) are 
such that w,,, r~, We, w,,, are integrable within any interior subdomain of Q,, , w,,,< 
< 0 where the functions ws,,w, wsw,, w / w, are bounded and w, is the solution of 
problem (5). (6) constructed in Theorem 1. 

This theorem can be proved by the procedure used to prove the uniqueness of the solu- 
tion of problem (5), (6) for n = ‘l in Theorem 1 of 141. 

Let us now construct an expansion in powers of t asymptotic as t --+(I for the solu- 
tion. w of problem (5), (6). The number of terms in the expansion (which we denote by 
CJ ) is arbitrary. We shall also estimate the remainder term of the series. Let us begin 
with the case where u (t, z) = PU, (z), v, 3 0, n>l 

Under this assumption Eq, (5) and condition (6) become 
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VW%,, - T3 (n - l/2) w, + n(q - 1) 22w, - qu, (!G) ,aiq + 
+ (q2 - 1)UlXT3NW, - q u,, (E) T3NW = 0 (18) 

( ,=I+&) 
w IT=0 = 0, w In=1 = 0, (Vww~ + m2 + u1, (E) r3*) lYji=o = 0 (19) 

Lemma 5. Let U1 (z) have a bounded derivative of order Q + 1 for 0 < it: < 

5 X. The system of ordinary differential equations for 0 < q < 1 for the functions 

Yi (E, rl), i = 1, . - ., q which depend on the parameter E (0 < E < X), i.e. the 
system of ordinary differential equations 

L,(Y) Z VYo2Yiqq +i%(q--l) Yin + 2VY~Y(J,1417~- 

- (n - ‘/a) (1 + i ggj y, + ,+zpzi VYlYJPm? - 
l#i, s#i, p#i 

- rlu1 (D q-1,4 + (11” - I) Ul, (E) Y(i-l,, - $JlX (E) Y(i-1) = 0 (20) 
with the boundary conditions 

Y,llli,l = 0, (VWi, + VYoJi + V 2 YJS,l,/~=O = 0 (21) 
Ifs& 

Sfi. I#% 

if i = 2, . . ., q,and 

Y1 I*=1 = 0, (VYclYm + VYOJI t Ulx (8) Ill=0 = 0 (22) 

where Y, (q) is the solution Y (q) of problem (9), (lo), has a unique solution. This 
solution has the following properties : 

I yi I < Ni (1 - q) ~7 I yin ) < ‘I’, I yt~yi,n I < Ri (23) 

fors<q-i+f,l\(q- i. The constants Ni, Ci, Ri, Nis, Ci,lt Ri,l do not 
depend on E. 

Proof. Let us first assume that the solutions Yi(i = 1, . . ..d of problem (20),(21), 

(22) exist and prove estimates (23), (24) for these solutions. These estimates are valid 
for YO= Y by virtue of Lemma 2. Let us verify them for Yr and then, assuming that they 

are fulfilled for i < p - 1, prove them for i = p, p < 4. For YI we have 

4' (I'& vYc?Y,,,+ n (q - 1) Y,, + 2Y~'oYorinY1 - 

-((,i--,?)!1+~jY1+(9f--1)u,XY~II - qU,,Yo = II (25) 

Moreover, boundary conditions (22) are fulfilled. Let us introduce the notation 

Li’(Yi) EE YY02Yinn ++n - 1) Yz, +zYYoYor,XYi -(n - I/*), i + ( i (2n + 2) 
2n _ 1 yi 

h’(Yi) = (“YOYi, + vYon Yi) I,=,, i z 1, . . . . q 

Let Yr = N, (1 - ~)a. Then 
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(ya = const 7 0) 

This implies that Lr’.(Yr -& Y,) < 0 for 0 < q < 1 and h’ (Ypi f Yr) < 0 if Nr is 
sufficientIy large. It is clear that (Y!rfiY+=, = 0. Hence, by virtue of the maximum 

principle, Y1 j, Yi > 0 and 1 YI I < UT1 for 0 b 9 < 1. 
Differentiating Eq. (25) s times with respect to E, we obtain an equation for 

aYYl i ay, jdsdn 
It is easy to see that 

4’ WI,, (1 - tl)o + asYl/ags) < 0 for 0 < II < 1 

A’ Wl,, (1 - q)o + PY, / aE”) < 0 

if Nr,,is sufficiently large. Moreover, asY, / afs = 0 for ‘11 = 1. Hence, 

Now let us obtain an estimate for Y,,. Let Y,, = zl. Equation (25) yields an equation 
for - *1 t A'(zl}rYYO~zIq +a(?--l)z1=- 2YYc#Ya,,Ylf 

-k (II - l/z) ii + $2) Y1- (112 - 1) QcYoll + ?-pl,YO (26) 

Let (I$ = Cp. Then 

A’ (Q,) = Cr [YY,a / 2 (1 - n)a + n (?I - 1)al < Cl (1 - q)~(‘/z - n) d 

6-- Gy, (1 - Tps, Cl, y3 = const > 0 

Hence A’ (aPr -& zl) < 0 for 0 < q < i if Ci is sufficiently large. Estimate (23) 

for Yi implies that there exist sequences nN+ and qN- such that nft + i as N -_$ og , 
and that for some Ci 7 0 we have 

(a- Cl5) 

1 a’nN < 0% 
The inequalities 

(Qf Cl4 \_*g > ” 

A’ (% f z) < 0, (% ric a 
1 

ri=sit:'o 
N 

imply that a1 -& z1 cannot vanish for 0 < “‘1 < 1. Hence, al + ~1 70 for 0 < q < I , 
which means that / ZI I < Cl@. 

Differentiating Eq. (26) 1 times fZ < q - 1) with respect to E, we obtain an equation 
for @Y,, J 3,’ analogous to Eq. (26). The following estimate can be verified exactly as 
for Yr,: I q, w I < Cl,1 (3 for O,C n< 1 

Dividing Eq. (25) bv YY@, we can use it to express Y,Y,,. By virtue of the resulting 

estimates for Y1, Y,, and properties of the function Y,, = Y established in Lemma 2, we 

I YOYl,, I <h RI I- const > o 

Differentiating Eq. (25) 2 times with respect to F,, we obtain an equation which read- 
ily yields the estimate 

I Yo@Y1,,I 85’ I B RI,L for 1 <q - 1 
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Estimates (23),(24) are therefore fulfilled for i = 1. Let us assume that they have 
been proved for i < p - 1 and prove them for i = p. 

Let us consider L,’ (Y,), where Yy, = N, (I - q) CT. It is clear that 

L,‘(YY,)<-NNpXp(f -“rl)a, h’ (‘I!,) < - N,x,‘, xp, xp’ = const > 0 

Hence, choosing our N, sufficiently large, we find that 

L,’ (Y, * Yp) < 0 for 0 < 71 < 1, A’ wp f Yp) -=L 0 

This implies that j lp 1 < ‘V, (1 - q) IS, since (Yp & I’,) /._r = 0. 

Differentiating Eq. (20) s times (s < 4 - p + 1) with respect to 5, we obtain an equa- 
tion for @fp / dES. Recalling the hypothesis of the induction. we obtain estimate (24) in 
the form 1 (3SYp / ai” J G N,, s (1 - 11) 6 

exactly as we obtained estimate (23) for Yp. Furthermore, estimates (23), (24) for 

YP,,, k’oY,lJn, @Y,,/d<‘, YodlY p,,lakz for IQ-p 

car, be justified exactly as for p r= 1. 

The existence of the solution of system (20) with conditions (21),(22) can be proved 
as follows. Problem (20)-(22) is linear for Yi (I = 1 ,...,Q). The existence of a solution 
for the system of equations al’,,, + Li (Yi) = 0, E > 0, with boundary conditions (21). 
(22) follows from its uniqueness, since in this case it is possible to construct the Green 
function for the operator ay,,,,+ &‘(Yi) 

under the boundary conditions Y, I,,=~ = 0, A’ (IT,) = 0. 
The uniqueness of the solution of this problem follows from the maximum principle. 

The estimate IY,J < Ci (1 - q)o, uniform in E for the solutions of the system 

aYzrir, + Li (Yi) = 0 with conditions (21),(22) is obtainable exactly in the same way 

as the estimate for the solution Yr of problem (25). (22). The derivative with respect to 
11 of such a solution for’ 0 Q q < 1 - 8, 6 = const > 0, can be estimated uniformly 
in F by making use of the first-order equations for Y,, obtained from the equations 

.?I i,,,, + Li (Yi) = 0 and boundary conditions (21), (22). 

The derivatives Y~,,~ and Y’,,,-rin can be estimated uniformly in E for 0 < n < 1 - 6 

by expressing them on the basis of the equations EY,~,, +- L, (I’,) = 0 and the equations 

obtained by differentiating with respect to 11. It is clear that these solutions converge 

uniformly to the solution of problem (20)-(22) for some sequence E --f 0. 

Theorem 3. Let U (t, 2) = t”U, (,I,), (n - 1) be any nonnegative number,let 
V, = 0, and let U,have a bounded derivative of order q $ 1 for 0 x< x < X. The 

following estimate is then valid for 0 < ‘G -< rQil for the solution w of problem (5). 
(6) whose existence was proved in Theorem 11 

JW(l,5,11)-i Yi(L rlWY/ <~~~'qp(q~lJ'~ y, lr= z\ (27) 
: 

a==0 

Here Yi (E, 11) are the solutions of system (20) with conditions (21), (22) and r4 r is 
some number which depends on U, (x), n, 4; lvrp= const > 0. 

Proof. We begin by stipulating that 

Y p* Ir zz i Yi” (n&p iy, Yi’( z Yi (k/L, Tj) 
i=o 
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Let US estimate the difference wmj k - Wem4. To this end we compute Lm,k(W*). 

Recalling Eqs. (9) and (20). we obtain 

L m, k (W,) = (1 + PQ(~~)~ + Y&) (((1 + bq (mh)x + i@)” - i, v cy;’ k)2 y;,,k + 

+v 2 
yz’y,ky, ;. ( mh)3+(l+a+ Ph _ + qUl(kh) ((m - 1) h)2+Y(mh)*+p” 1.: 

Ifs+leq+1 
9-l 

x (Y$ - Yqk-l ) - qU, (kh) [((m- 1) !I)~‘~ 21 ; (Yik - Yik-‘) (rnt~)l+‘~ - 
i=l 

(I-1 

-(mhy+Y 2 YiE” (mh)‘+iY ] - (mh)s (n - l/2) i Y$[ + (mh)l+zY - 
i=l i=l 

-((m-l)h)l*iY/h-(l +i~)(mh)iy] +(q2--l)U~,(kh)Y; k[((m-1)h)2+Y-(mh)2+.1]+ 

+ (q” - 1) UI, (kh) (mh)3+(q+1)yYq; - qlJ,, (kh) Yrs k [((m - 1) IqzfY - (mh)n+*f] - 

- qU~,(kh)(mh)3i(q+1)YYq”} - f (mhy (n .-- 1/2) p, ((mhy --((m - 1) f~)~) Y*“-~, k (28) 

It is easy to see that Lm,k 
if mh < T,+~ and if zq+l 

(W,) < 0 for 0 < q < 1 if M and pQ are sufficiently large, 

quality F, “Y;nk 

is sufficiently small, since for 0 < mh < ‘c~+~ we have the ine- 
< -_Ms, MS = const > 0, and the expression 

v (YY’ “)2 YY$ (2 + Pq (mh)% + @) (Pq (mV + I@) 

for mh < %, , and for large p, and fc4 is larger in absolute value than all the nonnegative 

terms occurring in the right side of Eq. (28). 
Let us compute hmtk (W,). Recalling boundary conditions (21), (22), (10). we obiain 

&,k (WA = Iv (1 -I- Pq (mh)’ + pL4hY yr7 “Y> + 

+ n (mh)2 + UI, (M)((m - 1) h)“fyl lsizo : 

= Iv (2 -t- Pq (mh)x + pc,h) (Pn ImhY + @) yys ’ y> k + 

+t vy,ky,; (mh)2+(s+‘)y + U1,(hh)(((m- 1) h) 2+y - (m~)2+y)I Into 

s+c=+1 

Since y; k 19+, <--Me, Me=const >0 for sufficiently small mh, it follows that by 
choosing sufficiently large B, and p. , 

Let us consider SW = W*Tlf - 
we can ensure that hm,k (W,) < 0 for mh < T~+~. 

wm,k. The above inequalities imply that 

-%%k(W*)-&J,(w)<0 for ,fi\(q<i 

Hence, 
(W*m~k)-l~m,,c (W,) - (wm,k)-l &ml, (WI < 0 

v (dV)2 s;; k - h-‘(mhy(n - l/c)(Sm, k -- p-1. k) - n (q - 1)(mfq?q3 k _ 

- h-‘Ul (kh) q ((m - 1) h)‘iy (Smp _ Sm. k-l)+ 

+ (q2- 1) U~,(kh)((m - l)h)*” Syp ’ - qU~,(kh)((m - l)t~)~+~ ,_F k + v(d%k + 

+ WT;“, k )Wyg sm, k , <O for O,(q<i 

[vS:s ’ -(n (mh)2 + 171, (kh) (mh)2“‘) (w”, k WY* ‘)-’ Sm2 “1 I*=0 < 0 

It is clear that for sufficiently small mh the coefficients of ,Srnlk in these inequalities 

are negative. Hence, by virtue of the maximum principle and the conditions S7V(1) =U, 
Salk = 0 we have the inequalities Smgk > 0 for mh < rqnrl , so that 

WW 6 YyS k(l + Pa (mh)x + y,h) 
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In exactly the same way we can prove that 

WW > Ys*“* k’(l - CQ (mh)X - r&) 

for mh f $+I ($+r is sufficiently small) and certain a, and ~~ independent of h. 

Taking the limit as h + 0 in the resulting inequalities for &V, we obtain (27). The 
theorem has been proved. 

Now let us consider the general case. Let 

u (t, X) = t”u~ (t, 2.) 

la’ &i-I I d CdPZil 

I b,il I 6 c4@+l (2% 

Here pr, pa, ps, Pa are certain nonnegative integers. In order to construct an asymp- 
totic expansion for the solution w of problem (5),(6) in this case, we consider the fol- 
lowing system of ordinary differential equations for Yi (g, q), i = 1, . . ., Q, which 
depend on the parameter,[ : 

~Yo2Yim + (r - I) nyi, + 2YYOYOS~Yi - 

-(n- V2)(1 +il(2n---))Yi+ 2 VY rYsYpnq - 
l+s+p=i 

Z#i, spi, P#i 

--rl ‘xl ~,(EJYzs+(~2-1) 2 a,’ (E) Yz, - 
zs+r+zn+z=i 2s+I+zn+z=i 

--r 21+l+~~+2=p8'(5)Yz + (rl- 1) 2 %G) Yh-- z1 e,(w,=o 

2s+z+2=z 2s+1+2=i 

yo=y, o\(r<1, 4>1 (30) 

and the boundary conditions 

Here a’ = p’ = 1 if i is even, and C$ = fi” = 0 if i is odd. 

Lemma 6. System of differential equations (30) with boundary conditions (31) has 
the solution Yi (i = 1, . . . , q), with the properties 

I 1-t ( B Ni (1 - v) 07 ( J7lq 1 d ciss I jToYinn I B Ri 

i?Y I I 1. fl\rL’(l -lJ)5 
at 

(i =- I,. . ., q) 
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(Ni, Ci, Ri, Ni’, Ni” = const > 0) 

provided that 

PI > [q / 21 - (n + 11, P2 > 14 / 21 - (n + 1) 

ps > [q / 21 - 1, P4 a [(Q - 1) / 21 

in Eqs. (29). and also that the functions a,, us’, 8,, b, have bounded derivatives of up 
to the order /q / (2n + a)] f 1 with respect to z . 

This lemma can be proved in the same way as Lemma 5. We can use Lemma 6 to 

prove the following theorem. 
Theorem 4. Let u, (t, x) = tn U, (t, z), let n > 1 be an integer, and let the 

conditions of Theorem 1 and Lemma 6 for 4 > 0 be fulfilled for u, (t, CC) and 
U, (t, 2) . The following relation is then valid for 0 < ‘G 6 tq+r for the solution w 
of problem (5). (6) whose existence was proved in Theorem 1: 

(32) 

Here Yi(E,q) are the solutions of system (30) with conditions (31),and Kq’,r’p+r = 
= const 10. 

Theorem 4 can be proved in the same way as Theorem 3. Here we have 

E 7,“. p= f yi (/& q)(m/q’+w~-~) 
.’ 

2=0 

J,p, k= y,“> k(l + pq (,fpm2~-1) + y,~li@~~-q 
* 

The term of the form 

v cE’;, KY> yr&“’ [(I + pq (,/qk?WW1) + pQhuw-‘))2 - 11 = 

==Y(Y ;’ h’)Z y:;; (’ + Pq W) (@-1)/W-1) + 

+ ~*JL1/(2W) (pq (,fpfl)l~2W _tp$ (,~)l~P-1))-1 

in the expression for L,,/, (IV,) is then negative for sufficiently large PLu, & ; it is also 
larger in absolute value than all of the nonnegative terms appearing in the expression 

for L,,,,k (IV*) if q < 1 and mh < tlq+r. Hence Lm,b(W*) < 0 for 0 < q < 1 and mh < 

< Tq+,‘. In the same way we can verify that a, tC (TV,) < 0 for sufficiently large PI, and 
pII if mh < Yq+, and ift’,, ,is sufficiently small. 

On the basis of the above theorems concerning the solution of problem (5), (6) we 
obtain the following theorem on the solution of problem (1) (2). 

Theorem 5. Let 
u (t, CIZ) = PU1 (t, Lx) (n > 1) 

u (t, 0) = 0, u1 (6 5) > 0 for I > 0 

where Ulx, U,,fU,, v, have bounded first-order derivatives with respect to t and 2. 

A solution u, v of problem (l), (2) then exists in the domain 

DT,{~\( t\('Q 2/w-1) = T,, 0 < 5 < x, 0 \< y < ce} 
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This solution has the following properties : 

u / U, uy tn JU are bounded and continuous in DTI 

u(t, z, y)>O for tr>O, 
Up 

~>0 fort>o, F-+0 as y-+0 

The derivatives uy, ux, uyy, ut, vy are bounded and continuous in y, 

I u2, I < -htn-Y 1 uyy 16 Es&x-~, ) z&t I< &Pl) 1 u, I< E,P 

The function v is continuous in y and bounded for bounded?/, and 

t-n+?* n 
YX' 

t-w:, u yt are bounded for bounded ?! 

1 puvv I< E:5tn@‘2, Ei = const > 0 

The equations of system (1) are satisfied almost everywhere in D.,.. For this solution 
we have the estimates 

al-1 (yt-‘:: (1 - &))U f 7.4 < m-1 (zJ-‘J,z (1 + pt’/J)) u 

a, p = const >0 

@(QE ~(Y&))-hh (@-I is the inverse of the function a) 
0 

U(l-ee-V~)~u~U(l-ee-V~) 

ys = [ M,y/(2t’i~ (1 - Pt’!z))]” + M,y 1/-- In p/(t”z (1 - Pt’ z)) 
,- 

v1 = [M,y/ (2t”2(4 + at”~))]” + M,y f-- In p / (tl’z (1 + at’z)) 

vA!l12 = 1 9 VMa2 = r/a--6, 6=const>O, E = const > 0 

1 - +- = exp [- & [yz + 0 (yl+E t(1-c1’2)]) for y -+ =, t - 0 

1 uytn / U - tn-‘/gYo (u / U) I< E,PY, (u / U). 

I tnuyy / uy - P-‘/2 Yen (u / U) I < ET Yen (u / U) 

t (u YYY% - (uYY)2) uY-2 < - Eg, Ei = const > 0 

(33) 

(34) 

The solution u, u of problem (l), (2) is unique in the class of functions U, u for 
which w = uvtn / U satisfies the conditions of Theorem 2. 

Theorem 6. Let U (t, x) = t”lJ, (x), let v. s 0, and let U, (x) have a bounded 
derivative of the order Q f 1. The following estimates are then valid for 0 < t < t, 
for the solution u, ZI of problem (l), (2) obtained in Theorem 5 : 

< jj/fq’Yo (u / U) tn-“z+ (q+l)(n-11)) IV,’ = const (35) 

where Y; (E, r), i = 1, . . . , q are the solutions of problem (20), (21),(22) and 
Y, (q) =Y (~1) is the solution of problem (9), (10). 

Specifically, estimate (35) yields a formula for the expansion of the quantity uy (t, z, 
0) asymptotic as t -+ 0 , and an estimate of the remainder term, 
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uy (t, r, 0) - u, (2) i Yi(Z, 0) P-“~+~(~+l) ( < 
i=l 

< M*“[!1(5) TV--“.+ P+l), 111,” = const (36) 
Theorem 7. Let the premises of Theorem 4 be fulfilled for I!.J (t, CC) and 80 (t, z). 

The following inequality is then fulfilled for 0 < t < t,’ for the solution U, 2, of prob- 

lem (1). (2) obtained in Theorem 5 : 

I 5 -i Yi(z, u / u) tn-l/.‘i’2 1 < Kq,“y, (u/ u) p+qe 
i=o 

where Yt 6 r) are the solutions of ordinary differential equations (30) with conditions 

(31); Y, (7) = Y (v), K,’ = const > 0. 
The following formula for the asymptotic expansion of uy (t, 5, 0) (as t -to) and 

estimate of the remainder term are valid : 

uy (t, 290) - 

< Kq”Ul (t, 5) tn’q’2, K~“= const > o (38) 
Theorems 6 and 7 follow directly from Theorems 3 and 4. 
The proof of Theorem 5 is similar to that of theorem 2 in r41. The condition w (z, .$ _ _ 

q) = u#’ / U yields the following expression for determining u (t, 5, Y): 
U’ 

Y = tn 
s 

(W (P’S , 2, s))-l ds, u* = u (t, 2, Y) / u(t, x) 
0 

Inequalities (17) yield the relations 5 

@ (u/U)(i + @,)--l< yt-l/’ < @(u / U) (1 - UtV? @(C)-\&j 
0 

Let us denote the inverse of the function @ (4) by CD-1 (s) . Then 

u (t, I) a-’ (y (1 -a+) t+) < u < u (t, 5) CD-’ (y (1 + fit”‘)+ 

By virtue of Lemma 2 we have 

&(V-ln(l-C)- V-lnpc)<@(C)< 

< $l(V-ln(l-C)- V-lnp.1 

1 

(39) 

Estimates (34) are therefore valid for u (t, x, Y) . Similarly, estimates (17), (ll), (12) 
imply the relation 

Here E > 0 is an arbitrarily small number. 
In the case where the premises of Theorem 3 are fulfilled we can set 

UIU q 

u$ (u / u, t, x) = ( (2 Yi (2, s) wz+i(yl ds 

0 ‘co 

to infer from Theorem 3 and relation (29) that 

1 y-lo)o (u / u, t, 2) tn - 1 ] <I& t(Q’i)fn+l) (40) 

Here Yi (E, 11) are the solutions of system (20) with conditions (21), (22) ; Y,, (q) is 
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the solution of problem (9), (10) ; Eg == const > 0.’ 
If the premises of Theorem 4 are fulfilled, estimate (32) for w yields the following 

relation for IL (t, x, 7~). We write u/l1 c[ 

5 (2 
IFi (L, s) p -'/Pi l/2 

J 

-1 

a$* (u/ I', t, x) =: (IS 

" t--o 

where I’i (4, n) dre the solutions of system (30) with conditions (31). Then 

1 ;pbq* (11 II) I!, t, s) P - 1 [ < El0 t”‘(@l), I.&= const >o (41) 
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In [1] the authors have proved a theorem on the existence of solution of the Cauchy’s 
problem for linearized equations corresponding to the problem of motion about a fixed 

point of a rigid body, with a cavity partially filled with a viscous incompressible fluid. 

In the case of small Reynolds numbers (high viscosity fluids), these equations will con- 
tain a small parameter e = v-1 and the Krylov-Bogoliubov asymptotic method given in 
[2] can be used to solve the system of Navier-Stokes equations. In the present paper we 

derive formulas for the corresponding approximate solutions. The case of a highly vis- 
cous fluid filling the cavity completely was investigated by Chernous’ko in [3 and 41. 

1. Statement of the problem. We assume that a body with a cavity parti- 
ally filled with a viscous incompressible fluid performs a given motion about a fixed 
point with an instantaneous angular velocity 0. It is required to determine the motion 
of fluid in the vessel. In the linearized formulatron this problem reduces to solution of 
the following system of Navier-Stokes equations : 

in the region $2 filled with fluid in the state of equilibrium, with the boundary conditions 


