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The problem of boundary layer development around a body as it begins to move through
an incompressible viscous fluid at rest is one of the basic problems of boundary layer
theory, We prove the existence and uniqueness of the solution of this problem under cer-
tain natural conditions, use the method of straight lines to obtain approximate solutions
and prove their convergence, and obtain expansions in powers of ¢ for the quantity defin-
ing the resistance of the medium to the moving body and for certain other quantities,
These expansions contain an arbitrary number of terms and are asymptotic as ¢ — 0,
The remainder terms are estimated, Boundary layer development during acceleration
was investigated by Blasius [1], Gortler [2], et al, Their studies are summarized in mono-
graph [3].

Let us consider the problem of boundary layer development during acceleration for an
external flow of the form U (¢, z) = t"U, (t, z) for any number r > 1, where
U; (t, x)is either independent of £ (as with Blasius and Gdrtler, who considered integer
n ) or is such that U,, / U, is a bounded function,

The problem of boundary layer development at a body as it begins to move in a vis-
cous incompressible fluid at rest in the case of symmetric flow leads us to consider the

system of equations Up -+ Ul + Dy = — Py + Vi, Ux + vy =V (1)

in the domain D{0<(¢t < 7,0 Cz<LX, 0y < oo} under the conditions

Ulmo =0, ulmo=0, ulymp=0, v|ymp=v0(t, z), u—U for y— oo (2)
Here

Uy 4+ UUp = — pay Ulemo =0, Ulyeg =0, U>0 for tz>0
U::tn U]. (t, .’l)), n>1

The ratio U,; / U, is a bounded function,

In [4] we showed that for n = 1 problem (1), (2) has a solution given a certain smooth-
ness of the functions U (¢, %),v, (¢, z) and that this solution is unique in the domain
D for t < t;, where ¢, = const > 0 , and depends on U and ,. We also wrote out
the first terms of the expansion of the function ¥ in powers of £ and estimated the re-~
mainder term, In addition,we proved that the approximate solutions obtained by solving
a certain system of ordinary differential equations converge to the exact solution of prob-
lem (1), (2).

We shall carry out a similar analysis for the case of an external flow of the form
U =t"U,(t, x) forany n>1. In addition, we shall construct an expansion in powers
of ¢ asymptotic as ¢ — 0 with an arbitrary number of terms and estimate the remain-
der term for the quantity u, (f, z, 0) which represents the resistance of the medium to
the motion of the body, and for certain other quantities.
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Specifically, in Gértler's case (U (¢,. z) = t"U, (z), n > 1, v, (¢,2)=0) we have

q
iy lymo = Us (2) 77" X ¥y (z, 0) £ U, (2) O (47 @00
i=0

where ¢ is an integer and where Y, (§, 1), { = 1, . . ., ¢ must be determined succes-
sively as the solutions of ordinary differential equations with respect to n which depend
on the parameter § ; the quantity Y4 does not depend on § (see Egs. (20) with conditions
(21),(22)).

An entirely similar procedure can be used to investigate boundary layer development
during acceleration for three-dimensional axisymmetric flow,with the second equation of
system (1) replaced by the equation

(r (t7 x)u)x + (r (t, x) v)y =0
where r (f, ) is a given function describing the streamlined surface. The same applies

to the problem of extension of the boundary layer when instead of the condition & |x=p=
= 0 we are given the initial velocity profile

ulx=o =U (t’ y)$ U (ta y) > 0 for tay > 0
The solution of problem (1), (2) can be constructed by the method applied in [4] to the

study of problem (1), (2) in the case n = 1.
Let us make the following substitution of the independent coordinates in system (1)

T=1"h  E=z, = (3)
Let us also introduce the new function wth
w= ¥ )

Eliminating v from system (1), we obtain an equation of the form

WPy — T (0 — YY) we — UMy + n (n — 1) Pw, +

+A4,7*"w,+ Bit*Mw = 0 (N - 1+2n-1-1) )
for w in the domain Q{0 < v < I, 0 'CE < X, 0 < 1}. In this expres-
sion A1=(712—1)Ux+(n-—1) Uyt | Uy, B1=—7|Ux—Ul!/U1

We add to this the boundary conditions
Wt =0, wleo=0, (vow,— vt 4 nt?-| C;v?V) |- =0 (6)
where
C, =U; + U1t/U1

Let us construct the solution of problem (5),(6) for some interval 0 (' t LTy T =
=const > 0, and then obtain the solution of problem (1), (2) as a corollary.

The existence and uniqueness of the solution of problem (1), (2) for = > 1 can be
proved essentially as in the case n = 1. We shall therefore merely point out the dif-
ferences between the two proofs,

Let f™* (n) = f (mh, kh,n) for any function f (v, &, n), A = const > 0. Let
us consider the following system of ordinary differential equations in the interval [0, 1]

of values of ] :
L () = v @™ 2wl — b7 (mh)? (n—fa) (™" — wmLk) —

— h-—l.rlU;n—l,k (m—1) h)sN (w™* — wmk-1) L n(q — 1)(mh)? w’,',l’k + (7)
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(coilt.)‘
AT (e ) WP B (e — ) P =0 (N =14 )

wo* =0, m=1,... k=0,1,..., [X/}]
under the boundary conditions

W) =0, Ay (@) = [vo"™ W — P ((m— 1) BN

+ n (mhyt 4 CY 7 ((m— 1) B ] g = 0 (®)

Let us show that as 4— 0 the solutions @W™* (M) of system (7) under conditions (8)
converge for mh < T; = const >> 0 to the solution of problem (5), (6). We begin by
proving that the solution w™* of problem (7), (8) exists for .mh < Ty ; we shall then
establish estimates for this solution which are uniform in 4.

The approximate solution N

A 1
um:k:u((mh)n s kha 7]), N=<1+2ﬂ—‘1)

of problem (1), (2) can be obtained with the aid of the solution of problem (7), (8) from
the formula wm.k - mk N
y=(mhy¥ § @ F@E)ids, W =u™ U(mh)", k)
0

The following lemma on the existence of the solution of problem (7), (8) can be justi-
fied exactly as in (4],

Lemma 1, Let Uy, Uy,, Uy U™, v, be bounded in D. System (7) with bound-
ary conditions (8) then has a solution ™% () positive for 0 <Cn <1 if 0 kb <
< X and 0 < mh < 1y << T, where 1) depends on {J and ,%,. The functions
w,™* are continuous for 0 <{ n <C 1 and are continuously differentiable for 0 <
Sn< i

As in [4], the solution of problem (7),(8) can be obtained as the limit as ¢ — (0 of
the positive (for 0 < m << 1) solutions of the system

Sw:,n,}k + Ly (w) =0, e>0, m=1, ... k=0,1,... [X[h]
with boundary conditions (8) whose existence can be proved with the aid of the Leray-

Schauder theorem,
Lemma 2., For 0 <{ 1 <{ 1 there exists a solution of the equation

Ap(¥) =Y — (0 —Y) Y + (n — 1) n¥, = 0 9)
which satisfies the conditions

Y (1) =0, Ay (¥) = W¥Yy + 1) |4y = O (10)

This solution has the following properties
My —mo<S<YM)<<M (1 —n)o (11)
Myl —m) (6 —K) Y (m) for o << (12)
— MoV () < — Myo 13)
| YY 4 | << M, YY, o << — M, (14)

(6=V—=Inp{d—m), p=-const, 0<p <)

Here W is chosen in such a way that
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0o = 2n + Y, 4+ 8, VM2 =1, wM: =1, —§
8, M;, K, fo==const >0; i=3,...,86
where § is some small number,
Proof, Lemma 2 can be proved in the same way as Lemma 2 of [4], We shall mere-
ly note the slight differences which arise for » > 1.1t is easy to show that if

=M ~—n0, vM2=1 | _=2n+2+?

then
An (@) <0 for 0 <1, Ay (1) < 0
For this reason Y (1) << @1 (M)- In similar fashion we can show that
Y (W) >0 (M) = M (1—n)o, MR =Yy — O

for some sufficiently small constant M.

In order to obtain estimate (14) we must refine the lower estimate for Y (n) in the
neighborhood of § = 1. Let @3 (1) = M; (1—n) (0 — K). Let us show that the constants
K > 0 and 0 < n, < 1can be chosen in such a way that the inequality ¥ (n) > ¢y is ful-
filled for ny < 1 << 1. It is easy to see that

Mm@ =Mt = |3 (12— 55 (1 53]

Let the inequalities

K/o<1, 1—K/o>d, d=const>D0, Md < M,

be fulfilled forn, <n << 1.
Then, if K is large enough,
A (@s) >0 for 1< <1

Let us choose 7, in such a way that

(1 —K[0) |y, =4
Then
1—K/o>»d, Klo<1 for <<
so that
A @) >0 for << 1
Further,

Pz Iﬂ='ﬂo= Mld (1 . ”10)5 ,11::1]0 < M, (1 — "]0) S "fl=1lo < Y (7]0)
since Mid < M,. Considering the equation

An((P3)‘“An (Y)zAn (q)3) for 0<"<1
for the difference @3 — ¥ and bearing in mind the conditions
@ -V =0 @—Y|_,<0
we find that bt ’ o <
Y () >(m) for no <<t
Now let us prove inequalities (13), We begin by introducing the symbol z = ¥ . Equa-
tion (9) yields the equation forz ,
VY2, 4+ am—1)z=(n—1)Y (15)
Just as in Lemma 2 of [4], we can show with the aid of Eq, (15) that there exist con-
stants Myand M, such that — Mo <2< — Mo foro<n< 1.
Estimates {11) and (13} imply that
IVYY IS —") Fn(t =) | Y, | Y2<vY

5
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Let us now show that
YY,, < — M,
Inequality (12) implies that there exists a sequence 1* which tends to unity as N — oc
and is such that Yn(nN) < My(—6+ 10 I,,=,1N + M)K
Hence, fora sufficiently small 1— 4" we have

VY o = (=W £ nt — )Yy o<
Slr—15)—n{1 =672 4 nK/s™] [ gty <— M2

(M7= const > 0)

Differentiating Eq, (9) with respect to 7, we find that R = YY on Satisfies the equation

A™(R) = VYR, + VYR + n(n — 1) RY = — 15,y
Let¥ = —Mgand 0 & My < M,/v. Then
A"(R—Y¥) ==Y, + Ms(vY, + (n — 1)nY™?) > 0 (16)

for 0 < m <1 if M, is sufficiently small, From inequality (16) and the condition

(R — ¥) <0 for 1 = n we readily infer that R — ¥ <0 for 0 << n << 1", which
means that R <— M, for 0 < n < 1.

Lemma 3, Let Uy, Uy, U;;U;™, 9, be bounded in D. The solutions of prob-
lem (7), (8) positive for 71 <C 1 then satisfy the inequalities

mhY (1 — a (mh)N™) Cwmkm) < mhY (1 + B (V™)
for mh < 1y, T’ << To-

Here a, f§, T’y are some positive constants independent of A.

Proof, Let us compute L,,, ; (F1), where

FM %) =mh Y () (1 + B(mh)¥1)
For m > 1 we have

Lo, g (F1) = (1 + B (mR)¥ D[(mh)? (vY?Y,, — (n — Y)Y + (n — )nY ) + (mh)® (2 +
+ B(mi)NIB (mi)NIvy2y | 4 ATV K(m— DRV mRY, 4 BT L K(m — 1)R)*N mhY]—
— k7 (mh® (n — 15) (m — DRYP (mR)N Tt — ((m — DN

Since YY, < —M,, it follows that L, ,(F1) <0 for n < 1provided that § > 0 is

sufficiently large, that mk <C Ty, and that T, is sufficiently small, The constants f and
To' do not depend on .

Now let us compute Ay, ; (F;). We have

A, 5 (F1) = {(mRB (WYY | + n) + v (mh)¥*1 2 + B (mh)" 1)BYY , —

— LK (m— ) )N mhY (1 B (mRYN Y+ €T F (m — RPN} |, <0

e

provided that B > 0 is sufficiently large, that mh < % , and that T’ is sufficiently small,
The inequalities

1 |
L, 5 (F1)— L, @) <O, e bm, i (F2) = o Aom 3 (0) <0
and the conditions !

0, k 0, k__ .k m, k _—
FoFf—wh =0, (FpF—w™h _ =0
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imply that . N
™A mh (4 -+ B(m)VN )Y  for mh < 1y
In similar fashion we can show that
w™E>mh (4 —a(mh)NYY for mh< T’
if & is sufficiently large,
Lemma 4, Let U;, Uy, U,;;U™, v, have bounded derivatives with respect to
E and T. The following inequalities are then fulfilled for the solution w™* of prob-
lem (7),(8) for mh < 1,:

Y o (1) (mh)(1 + oy (mh)V ) <0l () Yo ()(mh)(1 — By (mh)™ )
@™ — R | < (L ) Y, [ @ he wmbot) | < mY (N = 1 )
[w™ k| < Ky (mh)?,  w™Fwmk < — Ky (mh)?

Here Ty, ay, By, Ky, K,, & = const > 0., These constants do not depend on h,
and g can be chosen arbitrarily small,

This lemma can be proved exactly as Lemma 4 of [4],

Lemmas 3 and 4 directly imply the following theorem.

Theorem 1, Let the assumptions of Lemmas 3 and 4 concerning {J, and v, be ful-
filled, The solution w of problem (5), (6) then exists in the domain Q. {07 < 1y,
0<<E X, 0<n<<1}, where 1, depends on the functions I/" and v,; this solu-
tion has the following properties:

the function w (T, &, 7)) is continuous in the domain Q-, and

¥ (n) (1 — ™) <w (v, & ) << t¥ ()1 + pV7) (17

the derivative w,is continuous in 1 for 0 < 1 << 1 and

Y, () (1 + otV Swy (3, ) ¥ () (1 — BtV

the derivatives wg, w,, ww,, are bounded in the domain Q. and

jwg [<<TY, |w S+ &) Y, wwan < — K12

where the function w satisfies Eq, (5) almost everywhere in Q.,. The constants a, f§, o,
By, K,, e, are positive and depend on U, v, X-

Theorem 2, The solution of problem (5),(8) is unique in the class of functions
w > 0 which: (a) are continuous in the domain Q., ; (b) have a derivative w., continu-
ous in N for n = O ; (c) satisfy Eq. (5) and conditions (6) almost everywhere ; (d) are
such that w,, we, w., w,, are integrable within any interior subdomain of Q., , Wy, <
< 0 where the functions w,w, wyw,, w [ W, are bounded and w, is the solution of
problem (5), (6) constructed in Theorem 1,

This theorem can be proved by the procedure used to prove the uniqueness of the solu-
tion of problem (5),(6) for » = 1 in Theorem 1 of [4],

Let us now construct an expansion in powers of { asymptotic as ¢ — 0 for the solu-
tion" w of problem (5), (6), The number of terms in the expansion (which we denote by
q ) is arbitrary, We shall also estimate the remainder term of the series. Let us begin

with the case where Ut,z) =tU, (z), 2=0 n>1
Under this assumption Eq, (5) and condition (6) become
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Vg — T (1 — Vo) we + n(n — 1) TPy — Uy (€) ™Nwx +
2 — YUt wy — U B) ©Mw =0 (18)
/N 41t

=145 /
Wheo =0, W= =0, (vwy+n1® + Uy (§) ") |50 = 0 (19)
Lemma 5, Let U, (z) have a bounded derivative of order ¢ + 1 for 0 {2 <
< X. The system of ordinary differential equations for 0 < 1, << 1 for the tunctions
Y, (€ ), i=1,..., ¢ whichdepend on the parameter § (0 << & <C X), i.e. the
system of ordinary differential equations

Li(Y) = vY ¢ ipg + 0 (M—1) Yiz 4 2vY oYoun ¥ —

—(n—1/2)<1+l(2n+2)>Y+ S WYY Y —

I+s+e=i
1541, s7%1, p7 i

—nU, (g) Y(i—1)E, + > —1) Uy (E) Y(i—l)n — MU 1 (§) Y(i—l) =0 (20)
with the boundary conditions

Yilma =0, (v¥o¥in+vYon¥i+v X Y;st)]n=o =0 (21)

I4s=i
s7%=1, Is=1
ifi =2,...,4q, and
Yilg=mt = 0, (VYo¥Yun+vYeYy F Ui (8)) limp = 0 (22)

where Y, (n) is the solution Y (n) of problem (9), (10), has a unique solution. This
solution has the following properties:

1Y, <N, (1 —m)o, |Yiu|<Co, |Yo¥ml<< R, (23)
3y, 0y, d'y,
‘—a?— <N s(1—m)o, agl < Cio, \ Yo aa;m <SR (24)

for s<Cg—i-+1,1<g— i Theconstants N, C,, R,, Ny, C; 1, Ry, do not
depend on &,

Proof, Let us first assume that the solutions Yi(i = 1, ...,q) of problem (20), (21),
(22) exist and prove estimates (23), (24) for these solutions, These estimates are valid
for Yy=Y by virtue of Lemma 2, Let us verify them for Y; and then, assuming that they
are fulfilled for i < p — 1, provethem for i = p, p <X ¢. For Y1 we have

Ly (Y)=vY Y  +n(m— )Y, 4 2vY Y, Y1—

1 / +2 2 L —
—(n—11) [ 1 +zn—4)yl+(” — 1) UsaY oy — Yo =0 (29)

Moreover, boundary conditions (22) are fulfilled, Let us introduce the notation

Ly(Y;) =vYY, e —1) Y, +-20Y Y0urY; — (n — 1), )(1 + (22: + 2)> Y

1
N (Yi) = (VYo¥,, 4+ V¥, Yi) |
Let¥; = N; (1 — n)o. Then

=0 = 1,...¢
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e A R e e (| REAURDISEES B

2 2
F 2oV (1 —M)s—(n—1; )(1 -+ —2—Zj—i—)(i — 1} c} — N {l — s

(N1, ¥1 = const > 0)
1
AM(¥y=N JL’\?YQ <-—-—G -+ 35) - \’Y(mﬁ} i—o <—
(v, = const > 0)

Niye

This implies that L,/ (¥, + Y) < 0 for 0 << 1 and A (¥ 4 Vi) <0 if Vs
sufficiently large, It is clear that (¥ +Y1)},_, = 0. Hence, by virtue of the maximum
principle, ¥, 4+ Y; >0 and |V | ¥ for 0L

Differentiating Eq, (25) s times with respect to &, we obtain an equation for

Y,/ 988, 1<<s<<yqg
It is easy to see that

L (Nys(1 —m)o = 05Y1/085) <0 for 0 <y <1
A (Nig (1 — m)o 4 9571 / 08%) < 0
if ¥y is sufficiently large, Moreover, 93y, /98¢ = 0 for y == 1. Hence,
[ Y1/ 08° | < Ny (1 —m)o
Now let us obtain an estimate for Y Let Y,, = z. Equation (25) yields an equation
for 2, A (@) = vY ez, +n(n—1) 5 == — WYY, Yi+

—

Let ®; = Cy0. Then
N(@)=¢C Ivwg/2( —qo+nm—1Dol <t —moe—n <
K= C175 (1 — m)o, €1, y; = const > 0

Y, — (n2 - 1) le on + 'rlleYO (26)

Hence A" (D4 z) <Ofor 0y <{ ifCissufficiently large, Estimate (23)
for ¥; implies that there exist sequences 1,* and My~ such that n}} —»>1as N o,
and that for some C; > 0 we have

(31— 6'155)‘1."1:_,‘)1’G < 0, (z1 + C16) \ﬂ=7‘)§ ~>u

The inequalities A (@ 4 2) <0, (@1 4 21) ‘ﬂ=n 4+ >0
N
imply that @, +4- 7, cannot vanish for 0 {n < 1. Hence, @, 4- z; >0 foro<n <1,
which means that |z | < Cyo.
Differentiating Eq, (26) ! times (I < ¢ — 1) with respect to £, we obtain an equation
for o'y, | 6&! analogous to Eq. (26). The following estimate can be verified exactly as

for Ym. |9, J0EH| < Ca0 for 0 <1

Dividing Eq, (25) by vY,, we can use it to express Y,Y,,. By virtue of the resulting
estimates for Y3, Y, and properties of the function Y, = Y established in Lemma 2, we

find that | YoYyon | <Bu R, == const > 0

Differentiating Eq, (25) / times with respect to £, we obtain an equation which read-

s Py th -4 t
ily yields the estimate | Y'Y 0/ 05 IS Ry for 1Kg—1
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Estimates (23), (24) are therefore fulfilled for i = 1. Let us assume that they have
been proved for i <{ p — 1 and prove them for i = p.

Let us consider L, (¥,), where ¥ = N_(l — n)o. It is clear that

LAY IS =N, (1—m)s, M(¥)<—Nx, %, %, = const >0

Hence, choosing our N, sufficiently large, we find that

L (¥,+Y,) <0 for 0<n<t, M(¥,£Y,)<0

This implies that | ¥, | <.V, (! — n)o, since (¥, £ Y) [,—, = 0.

Differentiating Eq, (20) s times (s <X ¢ — o | 1) with respect to £, we obtain an equa-
tion for 9°Y", / 0&°. Recalling the hypothesis of the induction, we obtain estimate (24) in
the form | asyp/aas < ‘Np, . (1—n)s
exactly as we obtained estimate (23) for Y. Furthermore, estimates (23), (24) for

Yo. YoY oty joel, Yooy, JoEl for I<g—p
car. be justified exactly as for p = I.

The existence of the solution of system (20) with conditions (21), (22) can be proved
as follows, Problem (20)—(22) is linear for Y; (: = 1,...,q). The existence of a solution
for the system of equations &Y, -+ L; (¥;) = 0, & > 0, with boundary conditions (21),
(22) follows from its uniqueness, since in this case it is possible to construct the Green
function for the operator eY,,,+ Li'(Y3)

enn’

under the boundary conditions y, l—1 = 0, AM(yY)=0.

The uniqueness of the solution ot this problem follows from the maximum principle,
The estimate |Y,| <C C; (1 — )0, uniform in & for the solutions of the system
eY,, =+ L; (Y;) =0 with conditions (21), (22) is obtainable exactly in the same way
as the estimate for the solution Y, of problem (25), (22). The derivative with respect to
1) of such a solution for' 0 { n {1 — &, 0 :== const > 0, can be estimated uniformly
in & by making use of the first-order equations for ¥,, obtained from the equations
eY,,, -+ Li(Y;) = 0 and boundary conditions (21), (22).

The derivatives Yiin and Y, can be estimated uniformly in € for 0 < <1 — b
by expressing thern on the basis of the equations eY,,, + L, (Y,) = 0 and the equations
obtained by differentiating with respect to y. It is clear that these solutions converge
uniformly to the solution of problem (20)—(22) for some sequence ¢ — 0.

Theorem 3, Let U (¢, ) = t"U, (+), (n — 1) be any nonnegative number, let
U = 0, and let [/, have a bounded derivative of order ¢ - 1 for 0 < o< X. The
following estimate is then valid for 0 < T < 74, for the solution w of problem (5),
(6) whose existence was proved in Theorem 13

i . U o ( = 2n~\—’l\ 27)
lo (v, &) — 2 Y& myvi| KM Yy (r=mg)
1=0

Here Y, (§, m) are the solutions of system (20) with conditions (21), (22) and T, ; is
some number which depends on U, (), n, g; M',= const > 0.

Proof. We begin by stipulating that

q

YR = D) YF (miye, Y# =T (kh. M)
i=0

W F= Y BBy (mh)* - prgh) (6= (1+1)7)
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Let us estimate the difference w™ k¥ — W, ™%, To this end we compute L,, ,(W,).
Recalling Eqgs, (9) and (20), we obtain

Lo, k(W)= (1 + Bg(mh)* 4 pgh) {((1 -+ By (mh)* + poh)t — 1) v (Y™ Fp y™ k1.

N ) . 1 .
TV YPYEY S (mRPOY ey (kh) (e — 1) BT ()
I+s+p>2q+1
q—1 {
X (Yt — Yo 1) — nUs (kh) [((m— 1) R S - (¥ — ¥ 1) (my+i —

i=1

q--1 q
(R S) Yigh (mh) ] — (b (n— 1) 3 Y[k (mB)Y
i=1 i=1

—((m — 1)h)]+'iY/h_ (! + i) (mh)i*] 4 (M2 — 1)U1x (kR) Y:r;, k[((m —1) h)2+Y . (mh)2+‘r]+
+ (02— 1) Usg (kh) (m)* DYy K Uy (kR) Y™ F [((m — 1) RPFY — (mhyerv] —
: 1
— MW (kRY(mh)* @YY by — —— (mh)P (1~ 212) By (mh)* —(m — D) RY) Y, 1 F (28)
It is easy to see that L, , (W,) <0 for 0 <{n< 1 if M and B, are sufficiently large,

if mh < 1,,, and if 7, is sufficiently small, since for 0 < mh < Ty4; W€ have the ine-

quality y™ "Y:’:]'ﬂ" < —Mj;, Mg = const > 0, and the expression

V(Y™ B YT K (2 4 By (mhY 4 poh) By (mhY* + poh)

for mh <v,,, and for large By and K is larger in absolute value than all the nonnegative

terms occurring in the right side of Eq, (28).

Let us compute A, , (W,). Recalling boundary conditions (21), (22), (10), we ob:ain
Aot (W)= [V (1 + Bg (mh)" - php Y™ ¥y ™ ¥t
+ 7 (MR A Use (kR) ((m — 1) B)*] |,y =
= [V (2 4 Bg ()" + pgh) By (mh)* 4 pgh) Y™ Fy™ F
+ 2 WYY mRPHEEDY 4 (k) (e — 1) R — (mR] |,
s+H>g+1

Since Y, * In=0 <—Ms, My=const >0 for sufficiently small mk, it follows that by
choosing sufficiently large f,and p,, we can ensure that Apy,x (W,) < 0 for mh < Tger®
Let us consider §™k = W, Mk — M,k The above inequalities imply that
Lk (Wy)— Lp,;, (w) <0 for . 0<n <1

Henc (W™K Wi (W o) — (@™K) 1 Ay, (w) << O
ence,

v (emER ST — R (mRP (r— Y2) (ST S™LE) g (g — 1) (mbyrST K —
— T (R)n ((m— 1) )P (S™ K — 7 BT
+ (N2 — 1) Ut (kh) ((m — 1)0)MY ST — mUs (kh) ((m — 1) R S™ F oy (w4
+wm ’f)wl';]-,f' ™ ’*‘<‘0 for 0<n <1
(VST ¥ — (n (mhY? 4 U (KB) (mh)>* ) ™ B Wi 2 sm Ky 0
It is clear that for sufficiently small mh the coefficients of S™* in these inequalities

are negative, Hence, by virtue of the maximum principle and the conditions S™*(1) =V,
§0% = 0 we have the inequalities S™F > 0 for mh < Tg+1 - 50 that

wE Y™ (1 4By (mh)* 4 pgh)
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In exactly the same way we can prove that
Wk > Y™ R (1 — g (mh)* — ygh)
for mh < 7,4 (74 is sufficiently small) and certain @, and 7, independent of k.
Taking the limit as 2 — 0 in the resulting inequalities for ™%, we obtain (27), The
theorem has been proved.
Now let us consider the general case, Let
U, zy = t"U, (t, 2)
PL
Us(t, 2) = X a(@)0° + 8 (8, 7). |G| <ext™t
8§=0

]

le(tv x) = 2’ a,’ (III) ' 4a'en (t, x), l a’p,u1 l  CotPrtl

s=0

P3
Uy/ U,= E 0, (x) t* 4 B (2, ), lepsu l K CytPel

s=0

Pa
Vo (b, ®) = 2 b ()1 F boga (6, 3)s [ bor | Seatoet (29)
§==0
Here Py, P9, P3, P4 are certain nonnegative integers, In order to construct an asymp-
totic expansion for the solution w of problem (5),(6) in this case, we consider the fol-
lowing system of ordinary differential equations for ¥, (§,m), i = 1, ..., ¢, which
depend on the parameter§ :

VY ¥ inn + (N — 1) nY iy - 29V Y g5 ¥ ; —
—(n—Y)A +i/Cn— 1Y+ D WYY,V —

I-stp=i
I#1, s71, p721i
—n D a®YeFm—1) D /()Y —
2s--I42n-t-2=i 2sHi4-anfo=i
—n D @AY, Fm—=1 D 6B Yn— 2 6,E)Y,=0
2s+l4on-f-2=i 9s+142=1 254-14-2:=i
Yo=Y, 0<n<<t, ¢>1 (30)

and the boundary conditions

Vil =0, (VY oYin+ vV 0Yibv X Vide—

Is==i
s=1, L1
S b)Y+ a1 (B) F Bt (B)) |,y =0 (31)

2s-H141=i
Here o = (* =1 if { iseven,and & = ' = 0 if { is odd,
Lemma 6, System of differential equations (30) with boundary conditions (31) has
the solution Y, (i = 1, ..., q), with the properties

1Y <NV:i(1—m)s, | Y| <33, [ YoV in | SR
oY .
} aal <1’Y1'(1_7])5 (l = ..., q)
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‘ Y,

_3—5:2— <Ni”('1——'|'])5 for z<q—2n——2

(N'i’ C‘i,t Ri} Ni’r N,i":COIlSt>O)
provided that
>lg/2l —(n+1), pp > lg/2] —(n+ 1)
p3 > lg /2] —1, ps > (g —1)/2]

in Egs. (29), and also that the functions g, a,’, 0,, by have bounded derivatives of up
to the order lg / (2r + 2)] + 1 with respect tox.
This lemma can be proved in the same way as Lemma 5, We can use Lemma 6 to
prove the following theorem,
Theorem 4. Let [, (¢, x) = t" Uy (¢, x), let » > 1be an integer, and let the
conditions of Theorem 1 and Lemma 6 for ¢ >> 0 be fulfllled for U, (¢, z) and
vy (£, ). The following relation is then valid for 0 < T < Tq; for the solution w
of problem (5), (6) whose existence was proved in Theorem 1:
lo(r, & m— 3 ¥, ) vrienn| < K,V enD (32)
i=0
Here Y,(E,n) are the solutions of system (30) with conditions (31), and K/ w4 =
= const >0,
Theorem 4 can be proved in the same way as Theorem 3, Here we have
q
Y'm k__ 2 Y; (k‘h n)(mh)lﬂ/(Qn 1)
1=0

Wzm k__ Ym 7\(1 +B (mh)(q+l)/(2n ])+u hl/(zn 1))
The term of the form

v(}m fyym, h[ (1 + B (mh)(q+1)/(2n«1) +pqh1/(2""]))2— 1]=

#TN

— v(ym 7\)2 Y":mh (2 4By (mh)(Q+1)/(2n—1) +

4 p,th/ (2n— 1)) (Bq (mh) (q+1)/(2n-1) +P=qh (mh)l/(2n—1))-1

in the expression for Ly, (W,) is then negative for sufficiently large i, B,; it is also
larger in absolute value than all of the nonnegative terms appearing in the expression
for Lim,x (Wy) if m <1 and mh < V. Hence Ly (Wy) < O0for 0 < < tand mh
< T4, In the same way we can verify that A, , (¥,) < 0 for sufficiently large 8, and
weif mh < v and if v, is sufficiently small.

On the basis of the above theorems concerning the solution of problem (5), (6) we
obtain the following theorem on the solution of problem (1), (2),

Theorem 5, Let

U@, z) =tU; (t, 2) (nx=1)
U,00=0, U@t z)>0 forx>0

where U,., U,;/U,, v, have bounded first-order derivatives with respect to ¢ and z.
A solution u, v of problem (1), (2) then exists in the domain

DT1{0<’5<T12/@"_I):T1’O<1<X7O\<y<°°}
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This solution has the following properties

u/U, u,t" /U are bounded and continuous in Dy,

u, " 2y, 1"
u(t, z, Y) >0 for ta>0, i >0 for >0, ‘T_%() as y— 0

The derivatives wu,, u,, uyy, u,;, v, are bounded and continuous in y,
1 -
[y [SE™ Juy [<Et™, Jug | <Est™, g [ < Eut”
The function » is continuous in ¥ and bounded for bounded ¥, and
t U, 2y, are bounded for bounded ¥

| Uyyy | < Est™ =, E; = const >0

The equations of system (1) are satisfied almost everywhere in D, . For this solution
we have the estimates

Oyt (1 — at’)U Cu <O (gt (1 + pr/) U (33)

a, B ==const >0
|4

D) = S(Yo (s)tds (D™ is the inverse of the function @)
0 U(l—e)<u<<U (1 —e™) (34)
vy = [Myy/(2t7 (1 —BtU)))? + Myy ¥V —Tnp/(#"+ (1 —Bt'))
vi = [Myy/ @2t (1 +at"))]2 -+ Moy ¥V —TInp/ (" (1 +at'™s)
vM2 =1, vMy2=13,—90, &§=const>0, &=const>0

1 ,
1-——;—:eXP(—mlyz+0(y”at("5’2)1) for y-»oc, t—0

|u,™ | U — Y (w | UY| < Eet™Y, (u/ U).
| Uy [ uy — 77 Yoq (w/ U)| < Eit" Yoo (u/ U)
t (Uyyytty — (uyy)?) uy™? < — Es, E; = const >0
The solution u, v of problem (1), (2) is unique in the class of functions u, v for
which w = u,t" / U satisfies the conditions of Theorem 2,
Theorem 6. LetU (¢, z) = t"U, (z),1ety, = 0, and 1et U, (z) have a bounded

derivative of the order ¢ +- 1. The following estimates are then valid for ) <{ ¢ < {4
for the solution u, » of problem (1), (2) obtained in Theorem 5:

q
g™ )0 — 24 DY (2, ) U) tin) | <

i=0
KMSY,(uw)Uytn-re@mn M, = const (35)
where Y. (§, n),i =1, ..., g are the solutions of problem (20), (21), (22) and

Y, )=Y (v) is the solution of problem (9), (10).
Specifically, estimate (35) yields a formula for the expansion of the quantity u,, (¢, x,
0) asymptotic as £ —( , and an estimate of the remainder term,
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q
|y (s 2, 0) — Uy (2) D Yi(a, 0)pniicun | <
i=1
K MU () tr-tiat(@rD) () M,” = const (36)
Theorem 7. Let the premises of Theorem 4 be fulfilled for U (¢, z) and % (¢, z).

The following inequality is then fulfilled for 0 < ¢ < £, for the solution z, v of prob-
lem (1), (2) obtained in Theorem 5:

n
uyt

q
o —2 Yi(@, ulUytinie| <K1Y, (u) U) o (37)
i=0

where Yi (&, M) are the solutions of ordinary differential equations (30) with conditions
(31): Yy () =Y (n), K = const > 0.
The following formula for the asymptotic expansion of u, (¢, z, 0) (as ¢ — () and
estimate of the remainder term are valid : q
|y (8, 2, 0 — U (t, 2) 17 D) ¥ (2, O) it | <
i=0
S KU (8, z)tmae, K, = const >0 (38)
Theorems 6 and 7 follow direetly from Theorems 3 and 4,
The proof of Theorem 5 is similar to that of theorem 2 in [4], The condition w (7, £,
1) = w,i" / U yields the following expression for determining u (¢, z, y):
u#
y=tn S W (2 sy tds,  wr=u(t, x, y) /UL ) (39)
0
Inequalities (17) yield the relations s
mwwnv+whﬂ<yfh<OW/wu—wﬂ¢%<N®=Syug
(4]

Let us denote the inverse of the function ® (¢) by ®2(s) . Then
Ut, )@y (1 —at™) ™) Su < U, 9) Oy (1 + pelyrh)
By virtue of Lemma 2 we have

= (V=RA=D— V=hw <00 <

2
<3 (V=@ -7 — V—Iny)

Estimates (34) are therefore valid for « (¢, z, y) . Similarly, estimates (17), (11), (12)

imply the relation u / 1 _ Yy — oc
{— I = exp T 4vi ¥*4-0 (yHE ta EVZ)]) ( t—0 )
Here ¢ > 0 is an arbitrarily small number,
In the case where the premises of Theorem 3 are fulfilled we can set
wU q ~1
-1 i
(Dq (u/U, t, .’II)——'—- S (2 Yi (CL’, S) o fe+i(nd 1)) ds
0 1=0
to infer from Theorem 3 and relation (29) that
Ly, (w /U, t, 2) 10 — 1| < E, #62 DInt1) (40)

Here Y; (§, M) are the solutions of system (20) with conditions (21), (22) ; Y, (0) is
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the solution of problem (9),(10); £, = const > 0.°
If the premises of Theorem 4 are fulfilled, estimate (32) for w yields the following

relation for u (¢, z, y). We write WU q )
D *(u/U, 1, 2) = .\ <E Y (x, 8) g e 1/2) ds
4] 1==0

where Y; (€, ) are the solutions of system (30) with conditions (31). Then
[y AD* (U, 1, x) 0 — 1| < Egg t 0D Eyg= const >0 (41)
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In [1] the authors have proved a theorem on the existence of solution of the Cauchy's
problem for linearized equations corresponding to the problem of motion about a fixed
point of a rigid body, with a cavity partially filled with a viscous incompressible fluid,
In the case of small Reynolds numbers (high viscosity fluids), these equations will con~
tain a small parameter & = v71 and the Krylov-Bogoliubov asymptotic method given in
[2] can be used to solve the system of Navier-Stokes equations. In the present paper we
derive rformulas for the corresponding approximate solutions, The case of a highly vis-
cous fluid filling the cavity completely was investigated by Chernous'ko in [3 and 4].

1, Statement of the problem, We assume that a body with a cavity parti-
ally filled with a viscous incompressible fluid performs a given motion about a fixed
point with an instantaneous angular velocity . It is required to determine the motion
of fluid in the vessel. In the linearized formulation this problem reduces to solution of
the following systemn of Navier-Stokes equations:

%t‘i_}_,_{f;) Xr=—vyq + vAu, diva=20 (1.1)
in the region Q filled with fluid in the state of equilibrium, with the boundary conditions



